skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mondal, M M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract This paper presents a study of the inclusive forward J/ψyield as a function of forward charged-particle multiplicity in pp collisions at$$ \sqrt{s} $$ s = 13 TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relativeJ/ψyields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range |η|<1. The J/ψmesons are reconstructed via their decay intoμ+μpairs in the forward rapidity region (2.5< y <4). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the J/ψrapidity region. The results show a steeper-than-linear increase of the J/ψyields versus the multiplicity. They are compared with previous measurements and theoretical model calculations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Abstract Event-by-event fluctuations of the event-wise mean transverse momentum,$$\langle p_{\textrm{T}}\rangle $$ p T , of charged particles produced in proton–proton (pp) collisions at$$\sqrt{s}$$ s = 5.02 TeV, Xe–Xe collisions at$$\sqrt{s_{\textrm{NN}}}$$ s NN = 5.44 TeV, and Pb–Pb collisions at$$\sqrt{s_{\textrm{NN}}}$$ s NN = 5.02 TeV are studied using the ALICE detector based on the integral correlator$$\langle \!\langle \Delta p_\textrm{T}\Delta p_\textrm{T}\rangle \!\rangle $$ Δ p T Δ p T . The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe–Xe and Pb–Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe–Xe and Pb–Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity,$$S_0$$ S 0 , of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Abstract Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1–3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025
  5. Free, publicly-accessible full text available December 1, 2025
  6. Free, publicly-accessible full text available November 1, 2025
  7. The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of Pb 208 nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral Pb 208 Pb 208 collisions at a center-of-mass energy per nucleon pair s N N = 5.02 TeV . The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17–25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of Pb 208 . The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes Tl 206 , 205 , 204 . ©2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  8. Abstract The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($$p_{\textrm{T}}^{\gamma }$$ p T γ ), in Pb–Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  TeV. The photon transverse momentum range is between 10–14 and 40–140 GeV/$$c$$ c , depending on the collision system and on the Pb–Pb centrality class. The result extends to lower$$p_{\textrm{T}}^{\gamma }$$ p T γ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is$$|\eta ^{\gamma } | <0.67$$ | η γ | < 0.67 . The isolation selection is based on a charged particle isolation momentum threshold$$p_{\textrm{T}}^\mathrm{iso,~ch} = 1.5$$ p T iso , ch = 1.5  GeV/$$c$$ c within a cone of radii$$R=0.2$$ R = 0.2 and 0.4. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb–Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$$^{0}$$ 0 bosons from the CMS experiment, which are all found to be in agreement. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  9. A<sc>bstract</sc> We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 3 GeV with the STAR experiment at RHIC.$$ {K}_S^0 $$ K S 0 meson and Λ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of Λ and$$ {K}_S^0 $$ K S 0 are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4πyields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations. 
    more » « less